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Polya’s theorem and related results are used to count and classify by space group all possible wurtzite 
derivatives with small unit cells having composition ABXZ, AR&%&, ABaX,, or ABC,X,. The same 
arguments are applied to the dipolar tetrahedral structures, which resemble wurtzite but have a 
different pattern of occupancy of the tetrahedral voids in the hcp anion framework. Covalent molecular 
orbital and electrostatic calculations are used to study the two real and eight hypothetical structures 
for LiaPO.,. Both predict shared edges to be destabilizing, in keeping with Pauling’s rules. 

Introduction 

A large part of crystal chemistry is de- 
voted to the study of variations on a small 
number of structural themes. One such sim- 
ple type underlying numerous more com- 
plex structures is that of wurtzite, the two- 
layer hexagonal polytype of ZnS. This 
well-known structure type, first determined 
for ZnO by the Braggs (Z), is based on a 
hexagonal closest packing of anions in 
which cations occupy half the tetrahedral 
voids, all those pointing in the +c direction, 
The simple, symmetrical wurtzite arrange- 
ment gives rise to other structure types in a 
number of ways. The hcp framework may 
be replaced by a close packing with a longer 
c repeat, as found in more than 160 ob- 
served polytypes of ZnS itself, and in a 
similar number of polytypes (often different 
from those of ZnS) in the isostructural com- 

pound Sic (2). A systematic enumeration 
of hypothetical polytypes is given in Ref. 
(3). Alternatively, in the wurtzite deriva- 
tives proper, the stacking sequence is left 
intact but two or more species of atoms are 
ordered over the cation, anion, or both po- 
sitions. In some cases this ordering may be 
accompanied by a shift in the pattern of 
occupancy of the tetrahedral holes in the 
anion packing to produce dipolar tetrahe- 
dral structures having some occupied tetra- 
hedra pointing up and some pointing down. 
Then there are shared edges between occu- 
pied tetrahedra. 

In this paper we present a systematic 
enumeration of possible hypothetical wurt- 
zite derivatives and dipolar tetrahedral 
structures with a variety of unit cells and 
compositions. We also make some remarks 
about how these lists, coupled with some 
theoretical calculations and some knowl- 
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edge of which structures are observed, en- 
able us to say something about bonding in 
these compounds. The companion paper 
(4) is a discussion of all structure types in 
the families which have so far been ob- 
served, with a particular emphasis on the 
geometric factors which may stabilize some 
of these types. 

Counting Methods 

The problem of enumerating geometri- 
cally possible wurtzite derivative and dipo- 
lar tetrahedral structures is very similar to 
one treated earlier by one of us (5) involv- 
ing MX, structures with the X atoms hexag- 
onally close-packed and the M atoms octa- 
hedrally coordinated. The resolution of this 
problem used some general counting princi- 
ples which have found application in a num- 
ber of other problems in crystallography 
involving structure enumeration. These 
have included questions concerning the al- 
kali sulfates and calcium orthosilicates (6), 
fluorite derivatives (7), LiFeOz (8), poly- 
typic materials (3, 9, IO), and distortions of 
the rock salt and CaC2 types (II -23). A 
review of the methods employed in these 
investigations is contained in Ref. (24). 

The basic strategy in answering all these 
questions is to phrase them as problems 
involving colorings of a set under the action 
of a group. The classic example of such a 
problem-and one of the simplest-is to 
count the number of ways to color the four 
vertices of a square using two colors, black 
and white. Any coloring is regarded as iden- 
tical with every other coloring produced 
from it by the action of the symmetry oper- 
ations in the square’s two-dimensional 
point group 4~2. The classes of equivalent 
colorings are called patterns. Thus, a color- 
ing and any of its images under rotations or 
reflections represent the same pattern. It is 
easy to see that in this case there are six 
patterns. 

A general way to arrive at this result is 

provided by Pblya’s theorem (9, 15 -17). 
This theorem associates with every element 
of the symmetry group 4m a monomial 
called the cycle structure. The cycle struc- 
ture of a four-fold rotation is xi, since it 
permutes the four vertices in one cycle of 
length 4. A mirror passing through the mid- 
points of two opposite sides has cycle struc- 
ture x$, since it possesses two cycles of 
length 2; while the mirror passing through 
two opposite vertices has two cycles of 
length 1 and one cycle of length 2, and so 
has cycle structure x:x&. The identity, with 
four cycles of length 1, has cycle structure 
g. In general, ti symmetry operation with ci 
cycles of length i, 1 5 i S n, has cycle 
structure xE’@ . . . x?. The cycle index 
polynomial is the average of the cycle struc- 
tures of all the elements of the group. In the 
case of the square, the cycle index is Z(4m; 

Xl, x2, * . .) = gxj + 2x& + 3x; + 2x,). 
Pblya’s theorem now says that the num- 

ber of patterns is the value of the cycle 
index if each variable xi is given a value 
equal to the number of colors. For colorings 
of the vertices of a square using two colors, 
the number of patterns is Z(4m; 2, 2, . . .) 
= &{2” + 2~2~-2 + 3*22 + 2*2}= 6. 

Two generalizations of Pblya’s theorem 
should also be. stated. Details are in Ref. 
(14) and the references cited therein. One 
often wishes to count patterns of colorings 
in which one does not care which color is 
called black and which white. For example, 
a coloring of the vertices of a square with 
three white vertices and one black vertex is 
regarded as identical with a coloring having 
three black vertices and one white vertex. 
The number of patterns in this case is 
+{Z(G; 2, 2, 2, 2, . . .> + Z(G; 0, 2, 0, 2, 
. . .)}. For G = 4m, this number is h(6 + 2) 
= 4. This observation is called de Bruijn’s 
theorem (17-20). 

It is also often useful to count the number 
of patterns with a given number of vertices 
white and a given number black. To do this, 
assign a variable, say, y, as a weight for the 
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color white, and another variable, say, z, as 
the weight of black. The weight of a pattern 
is defined in the obvious way: a pattern 
with three white vertices and one black ver- 
tex has weight y3z. Then the patterns are 
counted by weight by the value of the cycle 
index when each variable xi is given the 
weight yi + zi. For the problem of the 
square, Z(4m; y + z, y2 + z2, . . . > = H(y 
+ z)4 + 2(y + z)“(y” + 22) + 3(y2 + z2y + 
2(y4 + z”)} = y4 + y3z + 2yv + yz3 + z4, 
indicating that one pattern has weight y4, 
one has weight y3z, two have weight y2z2, 
and so on. This is called the weighted form 
of Polya’s theorem. de Bruijn’s theorem 
also has a weighted form, and generaliza- 
tions to more than two colors are straight- 
forward. 

Application to Wurtzite 

We now show how the problem of count- 
ing wurtzite derivatives and dipolar tetrahe- 
dral structures with small unit cells can be 
phrased as a problem of counting colorings 
of a set under the action of a group. The 
cycle indices of the relevant groups are de- 
rived, and the numbers of possible struc- 
tures are listed. 

When projected onto a plane normal to c, 
the centers of the occupied tetrahedral sites 
in wurtzite form a hexagonal 63 net as 
shown in Fig. 1. In this projection, the 
points adjacent to a vertex representing a 
tetrahedron at z = 0 are tetrahedra at z = 

FIG. 1. The wurtzite structure, its projection on the 
plane to form a 63 net, and the orthohexagonal cell of 
that net. 

t 4 and vice versa. Each tetrahedron shares 
vertices with the six tetrahedra (three 
above it and three below it) represented by 
the three adjacent points in the projection, 
and with the six tetrahedra at the same 
height represented by the second nearest- 
neighbor points in the projection. If, as in 
nearly all observed wurtzite derivatives, 
the c repeat is two close-packed layers (4), 
then all tetrahedra which project to the 
same point in the 63 net are occupied by 
atoms of the same species. 

The observed wurtzite derivatives can be 
referred to orthorhombic unit cells based on 
the orthohexagonal cell of the anion frame- 
work shown in Fig. 1. These cells vary in 
size, and the cell with a = m&,&,&e.& b = 
nb &h&x, and c = c,,rthOhtix will be called an 
(m,n) cell. This notation reverses a and b 
and m and n from those used by McLarnan 
(5) for a slightly different family of struc- 
tures, but is more nearly in keeping with 
usual crystallographic convention. 

A mathematical description of a wurtzite 
derivative in which two different species 
are ordered over the cation sites in an (m,n) 
unit cell while all the anion sites contain the 
same species is now easy to give. It is a 
coloring of the 4mn occupied tetrahedra in 
the (m,n) cell (or equivalently, of the 4mn 
points in the 63 net representing its projec- 
tion in the plane) in two colors, represent- 
ing the two species of cations. Derivatives 
with more than two ordered cation species 
can be described in the same way, only with 
more colors. 

Two points about this description and the 
resulting enumeration should be made 
clear. First, a coloring having s white tetra- 
hedra and t = 4mn - s black tetrahedra 
leads to a stoichiometry which we shall 
write A&X,,,. This formula does not im- 
ply that all the sites containing A atoms (or 
B or X atoms) are crystallographically 
equivalent, but merely that they contain the 
same type of atom. A real crystal of a com- 
pound we write as AptX4,, might contain 



several inequivalent sites A(l), A(2), A(3), P&mc does, however, take equivalent 
. . . containing primarily species A but dif- points to equivalent points, and is thus le- 
fering slightly in geometry and minor ele- gitimately described as a group of permuta- 
ment composition. Second, in the case of tions of the 4mn tetrahedra in one unit cell. 
stoichiometries like ABX, or A&X4 we For the moment, we therefore count pat- 
shall count the possible structures in such a terns of colorings in which two colorings 
way that a structure ABX, and the corre- related by a symmetry in Cmc2, are re- 
sponding “antistructure” BAX, are consid- garded as identical. We shall see later how 
ered to represent the same abstract strut- to incorporate the group P6smc. 
ture type. That is, in our enumeration, we To evaluate the cycle index of the group 
do not care which color represents A and Cmc2* permuting the 4mn tetrahedra in an 
which color represents B, only that the two (m,n) unit cell, we observe that the ele- 
colors represent different species. Obvi- ments of Cmc2, are of four types: (i) trans- 
ously this is a consideration only for stoi- lations in the ab plane, (ii) 2, screw axes 
chiometries like ABX,, not for those like parallel to c, (iii) mirror planes normal to a, 
AB,X, in which the antistructure BA,X, has possibly followed by translations parallel to 
a different composition. The alternative b, and (iv) c glide planes normal to b, possi- 
choice of regarding a structure and its anti- bly followed by translations along a. Any of 
structure as different is mathematically sim- these operations may be followed by a 
pler . translation along c, but such translations 

After this description of the wurtzite de- take every tetrahedron to an equivalent tet- 
rivatives as colorings of a set, it remains to rahedron, and so correspond to the identity 
find a group permuting that set which takes permutation of the 4mn tetrahedra, and can 
any coloring to an equivalent one. One be ignored. Each of these four sets of oper- 
might expect that this group would include ations contains 2mn different permutations 
every symmetry in the space group P6,mc of the tetrahedra in an (m,n) cell. For exam- 
of wurtzite. That is, a coloring should rep- ple, there is a translation taking a given 
resent the same structure type as any trans- tetrahedron to each of the 2mn tetrahedra at 
lation, rotation, or mirror image of that col- the same height along c. There are thus 8mn 
oring, or as the image of that coloring under symmetries whose cycle structures must be 
any combined operation which takes one determined. 
occupied tetrahedron to another. Unfortu- A slight conceptual simplification arises if 
nately, the choice of an orthorhombic unit we replace the (m,n) cell itself with the 
cell complicates this picture somewhat. hexagonal net obtained by projecting it 
This is because two points which are equiv- along c. The translations in Cmc2, corre- 
alent in the orthorhombic unit cell (say, spond to translations of the hexagonal net, 
O,O,O and l,O,O) are in general not taken to mirrors normal to a in Cmc2, become mir- 
equivalent points (that is, to points related rors normal to a in the plane, 21 screws are 
by some translational symmetry of the un- simply two-fold rotations of the 63 net, and 
rotated unit cell) by symmetries of the an- c glides normal to b go to mirrors normal to 
ion framework including three- or six-fold b. The result is a two-dimensional net 
rotations. Because of this, the group P63mc whose vertices are permuted by the plane 
cannot be regarded as a permutation group group c2mm. 
of the tetrahedra in one unit cell. The group As is easy to see from the fragment of the 
Cmc2, (referred to the orthorhombic axes), (m,n) unit cell shown in Fig. 2, every trans- 
the normalizer of Pl(m,n) in P6,mc(l,l), lation in this plane group takes -the point 
and a maximal orthorhombic subgroup of (x,y) to some point whose fractional coordi- 
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k--b/n-d 

+ 
a/m 
+ 

FIG. 2. A portion of an (m,n) unit cell in the 63 net. 

nates are [x + s/(2m), y + t/(2n)], where s 
= t(mod 2), i.e., where s and t are either 
both even or both 0dd.l The ith power of 
such a translation takes (x,y) to (X + 
si/(2m), y + ti/(2n)). In order for this to 
equal (x,y), it must be that 2mlsi and 2nlti. 
This happens if and only if 2m/(2m,s)(i 
and 2n/(2n,t)Ii, i.e., if and only if 
[2m/(2m,s),2n/(2n,r)](i. Thus, every cycle 
in the permutation corresponding to this 
translation has length [24(2m,s),2n/(2n,t)] 
= k, atid there are 4mn/k such cycles, so 

the cycle structure of this translation is 
xgmnlk. The sum of the cycle structures of all 
translations is thus 

s=t(mod 2) 

Twofold rotors are rather simpler. No 
twofold rotation of the hexagonal net fixes 
any of its vertices, so every twofold rota- 
tion consists of 2mn cycles of length 2 and 
has cycle structure xzmn. Since there are 
2mn such distinct rotors in one unit cell, the 
sum of the cycle structures of all twofold 
axes of rotation is 2mnxFjmn. 

The cycle structures of mirror and glide 
planes can be evaluated with equal ease, as 
was shown for a related family of structures 
in (5). We state only the result of this anal- 
ysis combined with the formulas above for 
translations and twofold axes. The average 
of the cycle structures of all the sym- 
metry operations of Cmc2, permuting the 
occupied tetrahedra in an (m,n) unit cell 
is the cycle index polynomial Z(m,n; x1,’ 
x2, - . .) = 

fm Ix X2m(2n,t) + m  2 
2nK2nA &$&t&,~2n,t~ 

(m-i)t272.t) 

Odt<2n ostc2n 
212nK2n,t) 2t2nK2n,t) 

+n Ix -%%%%, + n C -GiZ%L, . 1 
OZs<2m 

212ml(2m,s) 

Explicit cycle indices for some small values 
of m and n are listed in Table I. 

Given these cycle indices, it is easy to 
compute the numbers of wurtzite deriva- 
tives with various unit cells and stoichiome- 

1 Mathematical notation: ilj means that i divides j, 
i.e., thatj/i is an integer. i - j(mod k) means that k( 0’ - 
i). (i,j) is the greatest common divisor of i and j, and 
[i,j] is their least common multiple. 

OS<2m J 
2+2mN2m,s) 

tries. We consider several stoichiometries 
in order of mathematical, rather than chem- 
ical, simplicity. 

AB3X, Structures 

The number of A&& structures having 
as unit cell a subcell of the (m,n) cell is 
found using the weighted form of Polya’s 
theorem by taking the cycle index Z(m,n; 
Xl, x2, * - .), replacing xi b,y yi + zi, and 
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TABLE I 

THE CYCLE INDICES FOR THE GROUP Cmc2, PERMUTING THE OCCUPIED 

TETRAHEDRA IN SMALL (m,n) UNIT CELLS 

(m,n) Z(m,n; xl, x2, . . .I 

(l,l) 
c&l) 
(3,l) 

(491) 
(571) 
(La 
w9 
(3,2) 
(4,2) 

(133) 
(2,3) 

(3,3) 
(1,4) 

(2,4) 
(13 

tiw: + 6x3 
fs(xf + 2x+; + 9xj + 4x24) 
&-(x1” + 3x;‘x4 + 12.~~ + 2xj + 6x”) 

&(x$6 + 44x$ + 15x$! + 4x’ + 8~:) 
g&p + Sx$x~ + 18xiO + 44 + 12&J 
&(2xf + 10x’ + 4x3 

&(x16 + 2.$x4, + 17x8 + 12x44) 
&(x2” + 3xfxij + 20x:” + 2x,8 + 8x46 + 104 + 4x&) 
&(xj” + 4$x:2 + 27x:” + 16x: + 16xj) 

&(2x:2 + 14xg + 4x’ + 4.x$) 
ag(.xp + 2upx,6 + 21x&2 + 2x3” + 4x’3xg + 8x46 + 6x$ + 4x&) 
,$($j:” + 3x:zx;z + 28~:~ + 8xb2 + 6&t+ + 26x!) 

g2.x:~ + 18x28 + 4x’ + 8.x;) 
&($ + 2~1~x8 + 29~1~ + 16x48 + 164) 

ab(2x;o + 22x40 + 8x$ + 8x&) 

looking at the coefficient of the ymnz3mn term 
in the resulting expression. Frequent use of 
the binomial theorem enables one to find 
this coefficient without actually multiplying 
out the whole polynomial, so that all the 
calculations reported below could be car- 
ried out on a hand calculator. For small unit 
cells, these numbers are listed in Table IIa. 

These numbers count the patterns of col- 
orings under the action of the group Cmc2,, 
not P&mc. For only a few structures will 
this matter, since only rarely is a structure 
with an (m,n) unit cell taken to another 

TABLE IIa 

THE APPROXIMATE NUMBERS OF Al&X, 
STRUCTURES WITH SMALL (m,n) UNIT CELLS, 

CALCULATED USING THE GROUP Cmc2, AND THE 
CYCLE INDICES IN TABLE I 

n 

m 1 2 3 4 5 

1 1 6 19 130 776 1 1 5 18 124 775 

2 5 85 3,107 169,390 2 4 73 3,084 169,181 

3 12 2,987 1,312,419 3 11 2,970 1,312,389 
4’ 77 165,850 4 72 165,693 
5 406 5 405 

such structure by a 3 or 63 operation. Struc- 
tures which are so transformed, however, 
will not be counted correctly by the enu- 
meration in Table IIa. For example, the two 
(2,2) structures of composition AB,X, 
shown in projection in Fig. 3 are related to 
one another by a threefold rotation, but are 
not related by any symmetry in Cmc2,. 
They are therefore counted as different 
structures in Table IIa when in fact one 
would normally regard them as identical. 
How can this error be corrected? 

McLarnan (5) considered a problem 

TABLE IIb 

THE EXACT NUMBERS OF AB,X, STRUCTURES WITH 
SMALL (m,n) UNIT CELLS, OBTAINED FROM TABLE 

IIa BY INCLUDING THE GROUP P63mc AND 
CORRECTING FOR SUBCELLS 

n 

m 1 2 3 4 5 
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FIG. 3. Projections of two A&X, structures with 
(2,2) cells which are related by a threefold rotation 
around 00~ but not by any operation in Cmc2,. Black 
and white vertices represent A and B atoms, respec- 
tively. 

mathematically identical to counting wurt- 
zite derivatives except that in that paper not 
the vertices of the 63 net but its faces were 
to be colored. It was shown that for an 
(m,n) structure the property of being taken 

TABLE III 

THE HEXAGONAL SUBCELL OF THE (m,n) CELL 

SHARED BY EVERY (m,n) STRUCTURE WHICH IS 

CARRIED TO ANOTHER SUCH STRUCTURE BY SOME 

SYMMETRY OPERATION WHOSE ROTATIONAL PART 

IS A THREE- OR SIX-FOLD ROTOR 

n 

m 1 2 3 4 5 

1 1 1 1 1 1 
2 1 2, 1 2, 
3 21, 2b 3, 
4 1 2, 
5 1 

Note. These cells are shown in Fig. 4. 

to another (m,n) structure by some symme- 
try involving a three- or sixfold rotor was 
equivalent to the property of possessing a 
unit cell of hexagonal geometry which is a 
subcell of the (m,n) orthorhombic cell. The 
size and shape of this subcell is shown in 
Table III and Fig. 4. Note that the struc- 
tures in Fig. 3 have such a unit cell. Any 
(m,n) structure whose unit cell is not con- 
tained in this subcell is counted correctly in 
Table IIa. It remains, therefore, only to cor- 
rectly count the structures having these 
metrically hexagonal cells. 

First we produce some cycle indices. The 
group Cmc2, can be regarded as a permuta- 
tion group on the tetrahedra in the hexago- 
nal unit cell instead of in the orthorhombic 
cell by forming, for example, the factor 
group Cmc2,(1,l)/P1(2,) instead of 
Cmc2,(1,l)/P1(2,2). The cycle index of this 
new factor group with a hexagonal cell can 
then be computed just as with the 
orthorhombic cells. This is also true of the 
group P63mc acting on the hexagonal unit 
cell, which was not the case with the 
orthorhombic cells. Rather than give gen- 

‘a 

r 7 

@ 

L J 

2b 
3 

FIG. 4. The metrically hexagonal cells described in 
Table III. 
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era1 formulas for these cycle indices, which 
are even more unwieldy than the general 
formula given for the orthorhombic case, 
we present only the results of direct calcu- 
lations of a few of these polynomials. For 
cell 1, Z(Cmc2,; x1, x2, . . .) = Z(P63mc; 
Xl, x2, * * .) = (1/2)(x: + x2). For cell 2b, 
Z(Cmc2,; Xl, x2, . . .) = Z(P63mc; x1, x2, 
. . .) = (1/12)(x! + 3x4x; + 4x32 + 2xg + 
2x,). For cell 2,, Z(Cmc2,; x1, x2, . . .) = 
(1/16)(x: + 24~: + 9p2 + 4x:); while 
Z(P6g.r~; x1, x2, . . .) = (1/48)(x! + 6$x; 
+ 8x7~; + 13ti2 + 8x2x6 + 12x$). Finally, for 
cell 3,, Z(Cmc2,; x1, x2, . . .) = (1/36)(x:* 
+ 3x:x: + 12x; + 8x3s + 6x$x: + 6x$6> and 
Z(Phmc; Xl, x2, . . .) = (1/108)(~:~ + 9x:xX2” 
+ 18x; + 123x: + 14x3” + 18xgxg + 364). 

The correct number of AB,X, structures 
having a given hexagonal unit cell contain- 
ing 4h tetrahedra is found by taking the 
cycle index of P6gnc permuting the tetrahe- 
dra in that cell, replacing xi by yi + zi, and 
finding the coefficient k of the yhz3h term in 
the resulting expression. The number of 
these structures counted in Table IIa is the 
coefficient 4 of the same term in the cycle 
index of Cmc2,. Hence, the appropriate 
correction term to add to the number in 
Table IIa for any (m,n) cell having the given 
hexagonal subcell is k - q. Among the 
small cells treated here, only cell 2, has k - 
q # 0. For this cell, k = 3 and q = 5, so that 
to be correct, the numbers in Table IIa for 
the (2,2), (2,4), and (4,2) cells should all be 
reduced by 2. 

One final change should be made in Table 
IIa in order that it agree with our usual 
notion of unit cell. The six structures listed 
in Table IIa as having a (1,2) unit cell in- 
clude all those whose unit cells are subcells 
of the (1,2) cell. In particular, the structure 
with a (1,1) cell is included among these. 
Thus, there are really only five structures 
whose smallest orthorhombic cell is (1,2). 
Similarly, only four structures have a (2,l) 
cell as their minimal orthorhombic cell, and 
only 83 - 4 - 5 - 1 = 73 (remember the. 

corrections in the above paragraph) really 
have a (2,2) cell. Proceeding through Table 
IIa from smaller to larger cells and subtract- 
ing off the numbers corresponding to all 
subcells of the given cell produces Table 
IIb. This final correction process could also 
be simply described in terms of generalized 
Mobius inversion (21, 22). 

Table IIb is the final list of the number of 
AB,X, structures with an (m,n) unit cell. 
No structure recorded as having an (m,n) 
cell possesses any smaller orthorhombic 
cell, though it may have a smaller cell of a 
different geometry. Any structure whose 
unit cell is geometrically hexagonal, like the 
structure shown twice in Fig. 3, is counted 
only once. In all the following counting 
problems we present only the analog of Ta- 
ble IIb, assuming that it is understood that 
corrections for the group P&mc and for 
subcells have been made. 

AB2X3 Structures 

To count A&X3 structures, we proceed 
exactly as with the AB,X, structures, ex- 
cept that we look for the coefficient of the 
Y 4mn’3z8mn’3 term instead of the ymnzamn term 
in Z(m,n; y + z, y2 + z2, . . .). Obviously 
this term can be nonzero only if 3jmr2, 
which accords with the trivial fact that an 
A&X3 structure must have a unit cell con- 
taining a multiple of three tetrahedra. The 
number of AB,X, structures for small unit 
cells is shown in Table IV. 

ABX2 Structures 

In counting ABX, structures a slight twist 
arises. We begin in the traditional way, put- 
ting yi + zi into the cycle index for xi and 
finding the coefficient, E, of the term 
Y2mnz2mn* We wish, however, to regard 
every ABX, structure and its BAX2 anti- 
structure or complement as equivalent. The 
process used to obtain E counts them as 
distinct, except for the so-called self-com- 
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TABLE IV Dipolar Tetrahedral AX Structures 
THE NUMBERSOFAB~X~STRUCTURESWITH SMALL 

(m,n) UNIT CELLS 

n 

m 1 2 3 4 5 

1 0 0 50 0 0 
2 0 0 16,158 0 

3 32 15,770 17,413,546 
4 0 0 
5 0 

plementary structures, those related to 
their complements by some symmetry in 
Cmc2,. That is, E counts each self-comple- 
mentary structure once and each non-self- 
complementary structure twice. From the 
proof of de Bruijn’s theorem (9, 17-20) 
however, it is obvious that the self-comple- 
mentary patterns are counted by Z(m,n; 0, 
2,0,x . . .) = S. Thus, S + E counts every 
structure twice, so +(S + E) counts each 
once. These numbers, appropriately cor- 
rected for hexagonal cells and subcells, are 
listed in Table V. 

The last family of structures we consider 
are not wurtzite derivatives, but are closely 
structurally related to wurtzite. In the wurt- 
zite structure, every occupied tetrahedron 
has its apex above (i.e., in the +c direction 
with respect to) its three basal vertices, and 
shares its basal face with a downward- 
pointing empty tetrahedron. There are 
structures known (the high-temperature 
form of Li3P04 is an example) which, in- 
stead of having 100% occupancy of the up- 
ward-pointing tetrahedra, have some of 
these downward-pointing tetrahedra occu- 
pied. The adjacent upward-pointing tetra- 
hedron is always vacant in order to avoid 
face-sharing pairs of occupied tetrahedra. 
Every AX structure with some upward- and 
some downward-pointing tetrahedra must, 
however, contain some shared edges. We 
call such structures dipolar tetrahedral 
structures, and count the number of these 
types with an (m,n) cell assuming all cat- 
ions to be of the same species. 

ABCzXl Structures 

These structures can be counted just like 
those above except that now the tetrahedra 
are to be colored in three colors, A,B,C, 
instead of two. The weighted form of Po- 
lya’s theorem therefore says to replace xi in 
the cycle index by y” + zi + ~4 and to find 
the coefficient E of the ymn~mfl~y2mn term in 
this expression. Since again we wish every 
pair of complementary structures ABC,X, 
and BAC2X, to be counted only once, we 
use the weighted form of de Bruijn’s theo- 
rem (9, 20) to find the number S of self- 
complementary structures, which is the 
coefficient of ymn~mnl+mn in Z(m,n; w, y2 + 
z2 + w2, w3, y4 + z4 + w4, . . .). The aver- 
age +(S + E) then counts each ABC,X, 
structure once. The results of this calcula- 
tion for small unit cells are in Table .VI. 

This question is easily phrased as a color- 
ing problem. The pairs of face-sharing tetra- 
hedral sites project onto the plane to form a 
63 net. The structures in question are color- 
ings of an (m,n) unit cell in this net using 
two colors, U and D (up and down). Two 
such colorings will obviously be equivalent 
if one is taken to the other by some symme- 
try in p6mm or its maximal orthorhombic 

TABLE V 

THENUMBERSOFABX~ STRUCTURES WITH SMALL 
(m,n) UNIT CELLS 

n 

m 1 2 3 4 5 

1 3 9 61 484 4,968 
2 7 289 29,917 4,742,665 
3 41 29,425 63,117,162 

4 279 4,715,370 
5 2,628 
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TABLE VI 

THE NUMBERS OFABC~X~STRUCTURES WITH SMALL(WZ,~)~NIT CELLS 

n 

m 1 2 3 4 5 

1 3 35 815 28,551 1,166,179 

2 23 14,729 26,119,861 60,460,857,871 

3 436 26,047,359 3,064,146,632,213 

4 14,493 60,438,192,315 
5 584,305 

subgroup, c2mm. In addition, two struc- 
tures related by a mirror normal to c, which 
correspond to colorings related by inter- 
change of the two colors U and D, are to be 
regarded as identical. It is easy to see that 
every symmetry in P6Jmmc, the space 
group of the anion framework, corresponds 
in projection to some symmetry in p6mm 
possibly followed by interchange of U and 
D, so no operations other than these need 
be considered. 

We are therefore interested in colorings 
of the 63 net in two colors and do not care 
which color is called U and which is called 
D. This is exactly the situation to which de 
Bruijn’s theorem applies. The number of 
dipolar AX structures with an (m,n) cell is 
therefore S[Z(m,n; 2, 2, 2, 2, . . .> + 
Z(m,n; 0, 2, 0, 2, . . .)]. These numbers, 
corrected in the usual ways, appear in Table 
VII. 

Classification by Space Group 

Obviously many additional counting 
problems could be treated in this way- 
larger unit cells, different stoichiometries, 
derivatives of the dipolar structures, com- 
pounds like LiSiON featuring ordering over 
both the cation and anion sites, and so on. 
Because very few of these structure types 
are observed, however, it is more valuable 
to consider in a bit more detail the numbers 
already produced. 

A glance at Tables II-VII shows that the 

number of possible structures grows very 
rapidly as the unit cell increases in size. 
Indeed, it is easy to show that for the fami- 
lies we have considered the growth is al- 
ways exponential in mn. The argument fol- 
lows that given in (5). 

To some degree this rapid growth is dis- 
couraging, but it is often possible to use 
simple chemical or crystallographic argu- 
ments to select from these enormous 
classes of hypothetical types a much 
smaller list of structures one reasonably be- 
lieves to be the most stable. For example, 
there are 1286 dipolar AX structures with 
unit cell no larger than (2,2). Well over lo6 
derivatives of these structures exist with 
composition A&X,. Yet we shall see below 
that only ten of these are plausible for 
L&PO4 in that they satisfy the valence sum 
rule and have no PO4 tetrahedra with 
shared edges. These ten include both ob- 

TABLE VII 

THENUMBERSOF DIPOLARTETRAHEDRALAX 
STRUCTURES WITH SMALL (m,n) UNITCELLS 

n 

m 1 2 3 4 5 

1 
r 

5 22 209 2,168 26,115 
2 17 1,242 181,806 33,842,878 
3 130 178,380 417,661,416 
4 1,189 33,612,433 
5 13,821 
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served modifications of L&PO4 and eight 
unknown types. 

This enumeration does not take advan- 
tage of any counting theorems but merely 
proceeds geometrically in an ad hoc way. 
This is, however, not the only way to incor- 
porate chemical hypotheses into the mathe- 
matics. In several of the problems treated 
in Refs. (3, 10, I I ) chemical assumptions 
about local environments are made before 
structures are counted using general theo- 
rems. In the companion paper (4), we use a 
computer to generate explicitly all possible 
structures for p-LiSiON and to check at the 
same time how well they satisfy the valence 
sum rule. All these examples illustrate how 
one may “count after restrictions” in order 
to reduce the numbers dramatically while 
retaining the structures of chemical inter- 
est. Of course, the restrictions chosen may 
or may not be obeyed by all observed 
types. 

Another way of focusing attention on a 
smaller family of atomic arrangements 
arises from the realization that in the limit 
of m and y1 large, nearly every possible 
structure will have space group Pl (in the 
sense that #{(m,n) structures with space 
group Pl}/#{all (m,n) structures} 3 1). 
By contrast, all the observed structures 
have at least monoclinic symmetry, and 
most have orthorhombic or higher. It is 
therefore interesting to see how many pos- 
sible structures have each possible space 
grOUP. 

This question can be resolved using a 
result of White’s (23) which is related to 
Polya’s theorem and has previously been 
employed for studying polytypic materials 
(3, 9, 20). Basically, this theorem proceeds 
by taking the permutation group G (in this 
case Cmc2, acting on the 4mn tetrahedra), 
listing all its subgroups G1, Gz, . . . , GN, 
constructing an N x N lower triangular ma- 
trix based on the group-subgroup relations 
among them, inverting this matrix, and ob- 
taining the number of structures with space 

group Gi by multiplying the ith row of the 
inverse matrix by a suitably chosen vector 
depending only on G. Unfortunately, the 
number N of possible subgroups grows 
steadily with the cell size and the process 
for producing the N x N matrix has not yet 
been computerized. We therefore consider 
only (l,l), (1,2), and (2,l) cells, which re- 
quire no matrices larger than 43 x 43. Only 
a few hours of work by hand is needed to 
produce these matrices, which are rather 
sparse, and their inversion is the only use 
we have made of computers in this enumer- 
ation. 

Table VIII lists the results of these calcu- 

TABLE VIII 

THE NUMBERSOF STRUCTURES WITH GIVEN 
COMPOSITION, UNIT CELL, AND SPACE GROUP FOR 

LAND AVERY SMALL 

Number of structures 

(m,n) Space group ABX, ‘4&G “@GA 

Cl,11 P3ml 1 0 0 
pmc2p 1 0 0 
Pmn2: 1 0 0 
Pm11 0 1 3 

(132) Pmc2P 2 2 e(4) 

Pmn2T 2 2 G(4) 
Pm11 W 1 45(27) 

(Zl) Pmc2P 0 1 1 
Pmn29 0 1 1 
Pbc2: 1 0 0 
Pbn2: 1 0 0 

Pm11 2 0 4w 
Pbll 0 1 3 
Plcl 0 0 1 
Plnl 0 0 1 

P1129 1 0 2(l) 
P1121 0 1 3 
Pl 2 0 18(10) 

Note. An ABXz or ABC*X, structure and its anti- 
structure are counted as distinct, unlike the enumera- 
tion in Tables V and VI. The numbers in parentheses 
show what changes occur when a structure and its 
antistructure are identified. The structure with space 
group P3ml does not actually have the orthorhombic 
(1,l) cell but a hexagonal subcell, cell 1 of Fig. 4. 
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P1127 p112; 

FIG. 5. 63 nets showing the space groups P112: and 
P112p for a (2,l) cell. Both groups have the same size 
unit cell. 

lations; we refer to the references for de- 
tails of the method. Not every imaginable 
space group for the cells in question is 
listed, but only the space groups actually 
possible for one of the stoichiometries con- 
sidered. Some groups are listed twice be- 
cause they can occur in two different set- 
tings, one having some of the 21 axes 
passing through the centers of the octahe- 
dral holes in the close packing (29, and 
another with none of the 2, axes in this 
position, but all midway between two octa- 
hedral centers (2y)‘). The groups P112p and 
P112: with the (2,l) cell, for example, are 
shown in Fig. 5. 

The space group associated with each 
structure in Table VIII is the group of high- 
est symmetry possible for the given compo- 
sition and topology. It is possible that real 
structures may contain distortions which 
reduce their symmetry below that listed 
here. This explains the occurrence in Fig. 4 
of the companion paper (4) of intermediate 
types with space groups not found in Table 
VIII. These represent distortions of more 
symmetrical structures with the same to- 
pology, and cannot be obtained from a sym- 
metrical parent by cation ordering alone. 

In the enumeration using White’s theo- 
rem, unlike that of Tables V and VI, a struc- 
ture and its complement are regarded as 
distinct. Consequently, the number of all 
ABX, or ABC,X, structures with a given 
unit cell in Table VIII does not agree with 

that in Table Vor VI. Because of the small 
total numbers, however, it is easy to list 
explicitly all the derivatives except those of 
minimal symmetry for each cell, and to note 
whether or not they are self-complemen- 
tary. This allows us to count structures by 
space group, identifying any structure with 
its complement. Where these numbers dif- 
fer from the results of White’s theorem, 
they have been placed in parentheses in 
Table VIII. With these changes, the sums 
accord with the values in Tables V and VI. 
The enumeration of A&X, structures 
agrees with that in Table IIb. 

Some Remarks on the Stability of L&PO4 

VW 

These lists of possible structures and 
space groups will prove helpful in the com- 
panion paper (4), where they will be used to 
organize the observed structure types and 
to suggest possible alternatives to these ar- 
rangements or to demonstrate that none ex- 
ist. Another use for structure enumeration, 
seen in Refs. (11-13, 24), is as a basis for 
energetic calculations which aim at produc- 
ing some theoretical insight into bonding in 
a family of compounds. We shall not under- 

FIG. 6. The edge-sharing L&OS unit found in 
Li,P04(HT). 
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take such a systematic study, but shall con- An interesting feature of these two struc- 
tent ourselves with some preliminary re- tures is the presence in the high-tempera- 
marks on one of the more interesting ture form of shared edges, in violation of 
compounds with crystal structures derived Pauling’s second rule. This situation should 
from wurtzite, Li3P04. This is known in a be contrasted with the violation of the elec- 
low-temperature modification with a wurt- trostatic valence sum rule in such com- 
zite derivative structure with a (2,l) cell pounds as LiSiON. No wurtzite derivative 
[the W-Pmn2, (2,l) structure]. It is also or dipolar tetrahedral structure (in all of 
found in a high-temperature dipolar tetrahe- which every atom is four-coordinate) with 
dral form with a (2,2) cell [the D-Pmnb(2,2) composition LiSiON can exactly satisfy the 
structure] containing the edge-sharing tri- valence sum rule, but the observed struc- 
mers of LiOl tetrahedra shown in Fig. 6. ture comes as close as possible. On the 
These two structures are shown in Fig. 7 other hand, both polymorphs of L&PO4 are 
and are further described in our following based on the same anion packing and both 
paw- (4. satisfy the valence sum rule exactly, yet 

Ib) 
(d) 

FIG. 7. Slabs of the structures of Li,P04(LT) (a) and LiJ’O,(HT) (b). Shaded tetrahedra contain P 
atoms; unshaded tetrahedra, Li. Both structures consist of two layers like those shown which are 
related by 21 screw operations normal to the plane of the paper and which share only vertices with one 
another. The colored @ nets representing these structures are shown as (c) and (d). Open circles 
represent Li tetrahedra pointing up, solid circles are P tetrahedra pointing up, and open and solid 
triangles are Li and P tetrahedra, respectively, which point down. 



one contains shared edges between LiO, TABLE IX 
tetrahedra, which should be destabilizing. THE TEN POSSIBLE WAYS OF COMBINING Two OF 

In an attempt to understand this, we first THE LAYERS IN FIG. 8 TO PRODUCE A STRUCTURE 

seek a reasonable collection of structures to SATISFYING THE “PHOSPHORUS AVOIDANCE RULE” 

compare with those observed. As men- 
tioned above, the number of possible dipo- 

Transla- 
struc- Bottom Top tion of Shared Space 

lar tetrahedral structures for L&PO4 with at ture layer layer top layer edges group 

most a (2,2) cell is enormous unless addi- 
tional constraints are imposed. Let us 

1+1 1 1 o,w 0 Pmn2, 
i+i 1 i o,o,o 2 F2,/mll 

therefore consider only structures in which 
(2 + 2), 2 2 w,o : 

Pmnb 
2 

the valence sum rule is exactly satisfied. 
(2 + 3, 2 OAO Pmnb 
1+2 1 2 o,w 1 Pm11 

This requires that every oxygen atom be 3+3 3 3 WA0 0 Cmc2, 
3+3 3 3 

coordinated by one phosphorus atom and 
w40 

: 
C2/mll 

(4 + 411 4 4 w,o Pmnn 

three lithiums. In particular, PO., groups (4 + 4)2 4 4 o,t,o 3 Pmcn 
3+4 3 

cannot share vertices. Consider, therefore, 
4 %0,0 1 Pm11 

a single layer of close-packed oxygen atoms Note. To generate one of these structures, place the top 

and all the tetrahedra whose bases lie in 
layer directly above the bottom layer with the unit cells shown 
in Fig. 8 coinciding, rotate the top layer 180” about Ooz, and 

that layer. There are only four possible ar- translate it by the amount shown. Layers i and j are the 

rangements of phosphate tetrahedra in such 
reflections of layers 1 and 3, respectively, in the mirror at xy0. 
The last two columns list the average number of shared edges 

a layer which satisfy this “phosphorus in a LiO, tetrahedron assuming Li and P tetrahedra do not 

avoidance rule,” have at most a (2,2) cell, 
share edges with one another, and the space group of the 
resulting structure. The two observed arrangements are 1 + 1, 

and contain enough P atoms that they can the Li,PO,(LT) or enargite type [W-Pmn2, (2,111, and (2 + 2),, 

combine with other layers to produce the 
the LiiPO,(HT) type [D-Pmnb (2,2)]. 

composition Li3P04. They are shown in 
Fig. 8. The shaded tetrahedra in this figure contain lithium atoms, and at this stage can 

point either up or down. 

3 4 Requiring that this be the case unambigu- 
ously determines the Li atom positions in 

FIG. 8. The four possible L&PO, layers with (2,2) or all ten of the arrangements in Table IX, 
(2,l) cells satisfying the “phosphorus avoidance rule.” 
PO4 groups are the light tetrahedra pointing up or 

leaving us with ten hypothetical L&PO4 

down. The shaded triangles are LiO, tetrahedm, and structures. 
point up or down depending on how two layers are The simplest way to assess the effect of 
combined to form a three-dimensional structure. lithium tetrahedral edge sharing on the en- 
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To produce a unit cell with c repeat equal 
to two close-packed layers, two of these 
layers must be stacked in a way which re- 
spects the phosphorus avoidance rule. 
There are ten ways to do this, which are 
listed in Table IX. In each of these ten ar- 
rangements the valence sum rule is satisfied 
whether the LiO, tetrahedra point is up or 
down. Another condition is therefore nec- 
essary in order to locate the lithium atoms. 
The high formal charge on P makes it un- 
likely that a PO, tetrahedron should share 
an edge with a LiOl tetrahedron, and no 
such configurations have been observed. 
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ergies of these structures is to compute 
their Madelung constants. This amounts to 
replacing each atom with a point charge qi 
equal to its formal charge, and then evaluat- 
ing the total electrostatic energy, 

where i and j range over all atoms in the 
crystal. This is the energy of an ideal ionic 
crystal in which no account is taken of in- 
teratomic repulsion, van der Waals’ forces, 
polarization, zero point energy, and so on. 
In general, however, all these terms ac- 
count for only about 10% of the total energy 
(25), so as a first approximation in an ionic 
material the electrostatic energy may 
suffice. Figure 9 shows the electrostatic en- 
ergy of the ten hypothetical structures as a 
function of the amount of edge sharing. The 
calculations were performed on structures 
with ideal hcp geometries and with cell vol- 
umes equal to the observed value, using a 

-247 
t 

-248 
m 
3 
4 

s 

-24gl/ 
-250- 

0 1 2 

Shared Edges 

FIG. 9. The electrostatic energy (in eviformula unit) 
of the 10 possible L&PO4 structures, plotted as a func- 
tion of the average number of edges shared by a LiO, 
tetrahedron. The five points at lower energy represent 
the first five structures in Table IX. The observed 
structures are marked by crosses. 

locally written program employing the 
Ewald method (26). 

The structures fall energetically into two 
families, those composed of sheets 1 and 2, 
and those made of sheets 3 and 4. These 
differ in energy by about 1.5 eV (1 eV G 
23.1 kcal/mole) because of different P atom 
site potentials in the two families. This is 
ultimately probably caused by P-P repul- 
sions in view of both its independence on Li 
atom arrangement and the high formal 
charge on P. Within each of these classes, 
however, energy increases more or less lin- 
early with the number of shared edges, in 
keeping with Pauling’s second rule. Thus, 
the calculations support Pauling’s rule for 
each of the individual families, but suggest 
that there may be large energetic effects not 
taken into account if one merely counts 
shared edges, even among very similar 
structure types. The two observed confor- 
mations are not predicted to be the two 
most stable, but they at least lie in the lower 
energy class. This provides a partial ration- 
alization for the occurrence of the observed 
high temperature (2 + 2)2 structure, which 
is lower in energy than 3 + 3, (4 + 4),, 3 + 
4, or (4 + 4), despite having as many or 
more shared edges. 

It is interesting to compare these results 
with those of another set of computations 
based on extended Hiickel (EHMO) theory, 
a basically covalent molecular orbital 
method which has proved very successful 
in calculating geometric and electronic 
properties of molecules, and which has also 
been used to explain bond angles and dis- 
tances in crystals [(27-31) see, however, 
(32, 33)]. This approach can be combined 
with the band structure formalism to pro- 
duce a method for evaluating the energy 
and “molecular orbitals” of a crystal 
[(34,35); for applications see (12-23, 24)]. 
Unfortunately, storage requirements of the 
program preclude consideration of a unit 
cell as large as (2,2), but the structures 3 + 
3, 3 + 3, 1 + 1, and 1 -i- i have (2,l) cells 
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m 
4 
9 

-636.3 - 

i+i 
36 

- 636.4 j__________x 

- 

1+1 

3+3 

-636.5 ’ I I 

0 1 2 

Shared Edges 

FIG. 10. The extended Hiickel band energies of the 
four possible L&PO4 structures with (2,l) cells, plotted 
as a function of the average number of edges shared by 
a LiOl tetrahedron. The observed structure is marked 
by a cross. 

and are accessible. The energies of these 
structures2 are plotted in Fig. 10. Because 
of a different assumed standard state, the 
magnitude of the energies in this figure dif- 
fers from that in Fig. 9. 

This time the separation of the structures 
into two classes has disappeared, presum- 
ably because P-P repulsion no longer plays 
a major role in the total energy. It is inter- 
esting, however, that these covalent calcu- 
lations still show shared edges to be desta- 
bilizing. This is true in other families of 
structures as well, and is apparently related 
to the fact that shared edges force the an- 
ions to have distorted coordination environ- 
ments, hindering effective orbital hybridiza- 
tion and bond formation at these sites (36). 
Thus, extended Hiickel calculations do not 

2 Computational details: We use s and p valence 
orbitals only. Slater exponents are 0.65O(Li), 2.275(O), 
and 1.600(P). The H,, are -5.4 eV (Li s), -3.5 eV (Li 
p), -18.6eV(Ps), -14.0eV(Pp), -32.3eV(O s), and 
- 14.8 eV (0 p). The Hamiltonian matrix is computed 
using the modified Wolfsberg-Helmholz formula. The 
energies reported are averages of the band energies at 
the special points at k = +- 4 +- $ -+ 3. 

appear to explain the occurrence of L&PO4 
(HT)-though no calculations on this struc- 
ture itself were possible-but they do sug- 
gest that Pauling’s second rule can be un- 
derstood in covalent as well as ionic terms. 

Though neither of these sets of calcula- 
tions lets us completely understand the ob- 
served structures of Li3PO4, they should at 
least suggest the utility of structure enumer- 
ation in seeking this understanding. 
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